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Abstract
The objective of this work is to address a number of mathematical and computational is-
sues critical to the development of a robust multi-length scale and multi-stage deformation
process design simulator for the control of microstructure-sensitive properties in aircraft
manufacturing applications. As part of the research effort, multiple technical developments
are being accomplished. An efficient framework for accurately assessing the effect of un-
certainty in process and material parameters, in initial conditions and in the microstructure
has been developed. A spectral polynomial chaos framework as well as a novel support
space method have been developed for analyzing uncertaintyin metal forming problems.
On the meso-scale, robust statistical learning techniquesas well as gradient based methods
have been formulated for process sequence selection and design of highly optimized syn-
thetic microstructures. Maximum entropy concepts have been used to develop an algorithm
for efficient reconstruction of microstructure classes using a limited number of microstruc-
ture realizations. It is strongly believed that these advanced techniques can drastically
improve process and material predictions in critical components.

1 Status of effort

Substantial progress has been made in the achievement of theproject objectives in the
second year of this project. Particular contributions are briefly summarized below with
more details given in the provided references.

1.1 Development of a novel probabilistic framework for analysis and
design of metal forming processes [1]

This work introduces algorithms for quantifying uncertainty propagation in finite deforma-
tion problems. The first algorithm is based on the the Spectral Stochastic Finite Element
Method (SSFEM). A spectral expansion of the current configuration of a deforming body
is proposed using Legendre chaos expansions to compute the stochastic deformation gradi-
ent which is in turn used to compute the stochastic analogs ofthe various quantities which
appear in large deformation analysis. A total Lagrangian approach to the stochastic large
deformation is presented. The second algorithm is based on afinite element represen-
tation of the support space of the random variables. An example considering the effect
of uncertainty in the state variable on the response of a heterogeneous tension specimen
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Figure 1: Initial and final mean configuration for deterministic problem (left). Mean (center) and
standard deviation (right) of load versus displacement. One simulation is able to provide complete
probabilistic description of the propagation of uncertainty (here in the initial material state) during
the deformation process.
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Figure 2: Stochastic simulation of a cylinder upsetting process with randomness in the initial
radius and the die workpiece friction. Initial and final mean configurations(left). Mean (center)
and standard deviation (right) of the force versus stroke for the upsetting process. Initial and final
mean configurations for the cylinder upsetting process (right).

modeled using SSFEM is shown in Fig. 1. An example of open die forging under ran-
dom preform shape and die-workpiece friction modeled usingthe support space method is
shown in Fig. 2. Note that the support method provides the potential of full probabilistic
analysis of complex deformation (and other continuum pde-based – see [2]) systems using
legacy software for deterministic analysis of the underlying physical mechanisms (e.g. the
deterministic 3D forming computational design simulator under development [3]).

1.2 Development of a multiscale microstructure design framework for
polycrystalline materials

Many engineering materials are polycrystalline in nature and the presence of crystallo-
graphic characteristics like texture and misorientationsaffects several important physical
properties. Deformation process design for control of microstructure sensitive properties
involves development of a multi-scale tool where it would bepossible to design required
process sequence and macroscopic process parameters (die and preform shapes, forging
velocities, etc.) [3]. In the second year of this project, wedemonstrated innovative compu-
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tational techniques including statistical learning, reduced order optimization [4], and multi-
scale sensitivity analysis for designing deformation processes to tailor microstructures to
achieve desired properties. Key recent developments are listed below:
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Figure 3:A schematic of the statistical learning driven microstructure feature selectionand design
algorithm.

• A toolbox for evaluating strength of polycrystalline microstructures based on image
meshing and multi-scale homogenization techniques [5, 6]:

We have recently developed tools for evaluating large strain mechanical response
from 2D and 3D polycrystalline microstructures. Using microstructural images and
the single crystal constitutive laws as input, the tool can be used by the forming in-
dustry to identify processing stages that would fine-tune the properties of microstruc-
tures. Statistical learning based methods have been developed to automate decision
making. These design solutions can be used in conjunction with gradient optimiza-
tion schemes for optimizing microstructure-sensitive properties. We have included
meshing capabilities of the NIST software OOF-2 and parallel finite element process-
ing tools. The method of multi-scale homogenization in the large strain regime is
utilized to calculate the stress-strain response of microstructures consisting of aggre-
gates of grains. The key goals of this tool is to provide engineers with a user-friendly
yet powerful environment for conducting virtual tests withmicrostructural images
with the goal of designing microstructures with desired strength.

• Optimal selection of textural and stereological features using statistical learning tech-
niques [7, 8, 9, 10]:

Since material behavior is determined by its microstructure, it is a problem of inter-
est to evaluate the best microstructure that is suited for a particular application. A
key problem is identification of the set of features suitablefor a material used in a
particular application and thus, also identify the processes that would lead to such
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features. We employ statistical learning tools for exploring the feature-property de-
sign space and thus, unearth the best microstructures for anapplication. Through mi-
crostructure interrogation schemes based on polycrystal plasticity theory, we create
databases that explore a large range of anisotropic properties achievable in polycrys-
talline microstructures through thermo-mechanical processing. The schematic of the
computational design scheme is presented in Fig. 3.

1.3 Information-theoretic microstructure reconstruction from avail-
able statistical information

Microstructures can be considered as realizations of a random process. The knowledge of
this random process is limited since we are provided only with a set of features that the
microstructure exhibits. Our task lies in reliably predicting the class of microstructures
from this truncated description. Our interest also lies in obtaining property statistics of the
microstructure of interest. In obtaining the samples generated using this random process,
we use the principle of maximum entropy [11].
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Figure 4:(a) Samples of microstructure reconstructed using two-point correlation function as well
as lineal path functions. The statistics of elastic properties that are obtained isshown (b) Sam-
ples of microstructure reconstructed using two-point correlation function. The statistics of elastic
properties that are obtained is also shown.

As a demonstration we show the reconstruction of one-dimensional hard-rods: Ana-
lytical expressions are available for two-point and linealpath correlation functions of 1d
hard rod structures. Two means of reconstructions are considered in this section: (i) Re-
constructing hard-rods from two-point correlation functions alone (ii) Reconstructing hard-
rods from two-point and lineal path functions. Samples of 1dhard rods and their property
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statistics are shown in Figure 4. The statistics of properties clearly shows that in the case of
incorporating more amount of information (connectivity information in the form of lineal
path functions), the statistics are more sharp indicating the class of microstructures satisfy-
ing this condition is more profound.

A reconstruction of microstructure with short range correlations is shown in Fig. 5.
Herein, we assume that the reconstructed microstructures are isotropic and homogeneous.
Some examples of such materials include porous media, randomly polymerized plastics,
and other. Our aim is to reconstruct these materials from their two-point correlation func-
tions. Figure 5 shows some samples of porous materials with short range order that are
reconstructed using the MAXENT scheme and the associated elastic property statistics.
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Figure 5:Some samples of materials with short range order reconstructed in a32 × 32 grid.

We plan to explore the utility of this MAXENT-based reconstruction of microstructure
classes in the context of a stochastic multiscale analysis and design. For example, the vari-
ability of the initial material state discussed in the example of Section 1.1 (refer to Fig. 1)
can be obtained from a maximum entropy analysis using a finitenumber of experimental
realizations of the polycrystal microstructure. Preliminary algorithms for such problems
are discussed in [12].
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3 Honors & Awards Received
A number of key note and invited lectures were given based on this work. Complete details
and power point presentations are given at http://mpdc.mae.cornell.edu/Publications/lectures.htm.

4 AFRL Point of Contact
This work is being communicated with the AFRL group of Dr. R. Dutton AFRL/MLLM.

5 Transitions
While no immediate commercialization plans are in place for the developed computational
mathematics technologies, we strongly believe that their transition to immediate needs of
AFRL and industrial partners is forthcoming.

6 New Discoveries
(a) Innovative statistical algorithms for exploring process/structure/property relations; (b)
The first techniques reported for full-probabilistic modeling of deformation processes; (c)
the first multiscale process design simulator being developed.
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